近日,我协会成员撰写的论文《A Novel Framework for Image-Based Malware Detection with a Deep Neural Network》在CCF-B级期刊(Computers & Security)上发表。第一作者为翦逸飞,合作作者为邝鸿波、任成龙、马梓诚,指导老师为王海舟。
作者提出了一种基于深度神经网络的新型恶意软件检测和分类框架。首先,利用反汇编技术将可执行文件样本转化为bytes文件和asm文件,并通过这样的方法将收集并标记过的正常软件数据集与著名的BIG 2015恶意软件数据集进行合并得到了一个平衡实验数据集。接着,为了有效地提取出数据样本中的高维度特征,使用结合数据增强的可视化技术进一步将样本转化为RGB三通道图像。最后,提出了一种的独特的深度神经网络分类模型SERLA(SEResNet50 + Bi-LSTM + Attention),用于恶意软件的检测与分类。模型性能评估结果表明,该方法在其他众多恶意软件识别方法中脱颖而出。

恶意软件检测与分类整体研究流程图

提出的SERLA神经网络模型
期刊简介:
Computers & Security是中科院2区、CCF-B级期刊;主要研究的主题涉及计算机安全,审计,控制和数据完整性等内容,是网络安全领域的知名期刊。
官方介绍:Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors – industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
论文链接:https://www.sciencedirect.com/science/article/pii/S0167404821002248